Bridging Classical, Quantum and Machine Learning Approaches: New Avenues to Studying Complex Quantum Materials
- Datum
- 19.06.2025
- Zeit
- 13:00 - 15:00
- Sprecher
- Werner Dobrautz
- Zugehörigkeit
- DRESDEN-concept Research Group Leader, TU Dresden
- Serie
- TUD nanoSeminar
- Sprache
- en
- Hauptthema
- Physik
- Andere Themen
- Physik
- Host
- Arezoo Dianat
- Beschreibung
- Understanding and predicting the behavior of complex quantum systems is a fundamental challenge in physics, chemistry, and materials science. Accurately modeling strongly correlated materials, catalysts, and superconductors requires solving computationally intractable quantum many-body problems, where classical methods face exponential scaling. In this talk, I will present how High-Performance Computing (HPC), Artificial Intelligence (AI)/Machine Learning (ML), and Quantum Algorithms might revolutionize computational approaches to quantum matter. HPC enables large-scale quantum simulations, AI/ML can accelarate optimization and yield data-driven insights, while quantum computing offers novel paradigms to potentially tackle problems beyond classical feasibility. I will discuss applications ranging from transition metal clusters releven to molecular catalysts and model systems for superconductors and quantum materials, highlighting how these computational techniques complement experimental and theoretical research.
- Links
Letztmalig verändert: 26.04.2025, 07:37:31
Veranstaltungsort
TUD Materials Science - HAL (HAL Bürogebäude - 115)Hallwachsstraße301069Dresden
- Homepage
- https://navigator.tu-dresden.de/etplan/hal/00
Veranstalter
TUD Institute for Materials ScienceHallwachsstr.301069Dresden
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft